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F i g u r e  2. Attack on cyclohexanone at  1 2 6 O ,  illustrating the effect of 
a n  axial group at C-4. 

selectivity in these cyclohexanone reductions. If this attack 
occurs a t  126' to the carbonyl group,lg rather than a t  90°, it  
is evident from molecular models that steric interactions with 
the axial hydrogen or other group at  C-4 may become severe. 
We attempt to illustrate this point in Figure 2; what is not 
evident from this diagram is that the groups attached to C-4 
are the only ones in the same plane as the carbonyl group. 
Molecular models indicate that in fact an attacking group at  
126' approaches as closely to the axial group at  C-4 as it does 
to the other axial groups, all of which are already known to 
markedly affect stereoselectivity. We propose that the in- 
trinsic preference for "axial" attack may simply be the balance 
between the interference of two (axial 3,5) vs. three (axial 2, 
6, and 4 )  hydrogens, and that this stereoselection is modified 
in a predictable manner20 by larger groups at  these crucial 
positions. An axial methyl group at  C-4 does in fact have a 
pronounced effect,20 which is not accounted for by other ra- 
tionalizations. 
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A Total Synthesis of C-Nucleoside Analogue of 
Virazole 

Summary: A synthesis of 5-carboxamido-3-(/3-~-ribofura- 
nosyl)-1,2,4-triazole has been developed by treating O-D-ri- 
bofuranosyl-1-carboximidic acid methyl ester with oxamido 
hydrazide followed by dehydrative ring closure of the open 
chain product by heating a t  135 "C. 

Sir: Several approachesl-lO have recently been developed for 
synthesis of nucleosides possessing the unusual C-ribosyl 
linkage (C-nucleosides). In the area of C-triazole nucleosides, 
the recently reported methodg lends itself only to the synthesis 
of 1,2,3-triazole C-nucleosides. A synthesis of DL-s-(l-@-ri- 
bofuranosyl)-3-amino-l,2,4-triazole has also been achieved3 
by a reaction of DL-2,5-anhydro-3,4-0-isopropylidene allonic 
acid lactone with aminoguanidine and subsequent removal 
of the isopropylidene blocking, but the approach seems to 
have limited application as far as the variation of C-5 sub- 
stituents on the triazole nucleus is concerned. We describe 
here a high yield procedure for the synthesis of C-nucleosides 
of 1,2,4-triazole derivatives which has potential for wider 
application in the synthesis of such nucleosides. The utility 
of our method has been demonstrated by a total synthesis of 
5-carboxamido-3- (P-~-ribofuranosyl) -1,2,4-triazole (4) which 
is a C-nucleoside analogue of l-P-D-ribofuranosyl-1,2,4-tria- 
~ole-3-carboxamide.~ 

Reaction of 2,3,5-tri-O-benzoyl-@-D-ribofuranosyl cyanidel* 
( I )  with catalytic amounts of NaOCH3 in CH30H a t  room 
temperature for 1 h led to the formation of the deblocked 
imidic ester 2 (mp 142-143 "C) in 60-85% yield: NMR 
(Me2SO-dG) 6 3.59 (s, 3, OCH3), 3.50-3.90 (m, 5, 2'-, 3'-, 4'- 
C-H and 5'-CH2), 4.06 (d, 1,1'-C-H, 51j-2,  = 2 Hz), 4.93 (br 
s, 3, 2'-, 3'-, 5'-OH), 8.25 (s, 1, C=NH). The imidic ester 2 is 
susceptible to a facile nucleophilic displacement reaction with 
a variety of nucleophiles. For instance with ammonia or hy- 
drazine, it formed the corresponding amidine and amidrazone 
ribosyl derivatives respectively. For the synthesis of open- 
chain precursors 3 of 1,2,4-triazole nucleosides, the imidic 
ester 2 was treated with the appropriate carboxylic acid hy- 
drazides. Compound 3 (R' = CONHz) was thus synthesized 
in almost quantitative yield by reacting stoichiometric 
amounts of 2 and oxamido hydrazide in dimethyl sulfoxide 
at room temperature for 18 h. The structure of 3 (R' = 
CONH2) was established by 'H NMR (Me*SO-dG): 6 3.6 (m, 
2,2'- and 3'-C-H), 3.8 (m, 1,4'-C-H), 3.95 (m, 2, 5'-C-H2), 
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4.15 (d, 1, l’-C-H, J ~ c ~ I  - 1 Hz), 5.2 (br m, 3,2’-, 3’-, 5’-OH), 
6.62 (br s, 2, CONHZ), 7.68,8.0 (br s, 2, CONHNHC), 10.05 (br 
s, 1, C=NH). When precursor 3 (R’ = CONH2) was heated at  
135 “C under vacuum (0.1 mmHg), dehydrative ring closure 
occurred within -15 min to give an 80% yield of C-Virazole 
4 (mp 193-195 “C). Compound 3 (R’ = CONH2) appears to 
have thermodynamic propensity to form compound 4 as 
shown by a slow conversion in aqueous solution a t  ambient 
temperature. The cyclized product gave the following proton 
NMR pattern (MezSO-dc): 6 3.53 (m, 2, 5’-C-H2), 3.82 (m, 
1,4’-C-H), 3.45, 4.17 (m, 1 each, 2’-, 3’-C-H), 4.73 (d, 1, 
1’-C-H, J1f-2,  = 5 Hz), 7.64,7.84 (br s, 1 each, CONHz),ex- 
tremely broad hydroxyl and NH protons between 5-7. Since 
the NMR data of the cyclized product do not allow a clear-cut 
distinction between structures 4 and 5, further proof in favor 

of structure 4 was obtained by converting the product to its 
cyano derivative 6. This was done by subjecting the t r i -0-  
acetyl derivative of the product to conditions of dehydration 
in POCb and pyridine. The resulting compound was shown 
to be 5-cyano derivative 6: IR (CHCl3) 2260 cm-l; NMR 
(Me2So-d~) 6 1.94 (s,3,COCH3), 2.07 (s, 6, 2-COCH3), 3.9-4.4 
(m, 3,4’-C-H and 5’-CH2), 5.24 (d, 1, 1’-C-H, J1,-2, = 5 Hz), 
5.31 and 5.56 (two t ,  1 each, 2’- and 3’42-H). To establish the 
anomeric configuration of the triazole moiety in 4, it  was 
converted into its 2’,3‘-04sopropylidene derivative which gave 
the following NMR pattern (MezSO-de): 6 1.32 and 1.50 [two 
s, 3 each, C-(CH3)2], 3.40 (d, 2,5’-C&), 3.45 (br, I, 5’-OH), 4.05 
(m, 1,4’-C-H), 4.73 (m, 1,3’-C-H), 4.94 (d, 1,l’-C-H, 5 1 ~ ~ 2 ,  

= 4 Hz), 5.05 (m, 1,2’-C-H), 7.69 and 7.91 (two br s, 1 each, 
CONH2), 1 NH proton burried under CONH2 signals. The 
NMR chemical shifts of the methyl protons in the isopropy- 
lidene derivative (6  1.32 and 1.50,6A = 0.18) supported the /3 
stereo~hemistryl~ of compound 4. 
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